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Preparative, Electroenzymatic Reduction of NAD* to NADH on a Thin Poly(Acrylic Acid)
Layer-Coated Graphite Felt Electrode Coimmobilizing Ion-paired Methyl Viologen-
Cation-Exchange Polymer and Diaphorase
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A thin poly(acrylic acid) layer-coated graphite felt electrode
coimmobilizing ion-paired methyl viologen — cation-exchange
polymer and diaphorase was prepared and applied to preparative
electroenzymatic reduction of NAD® in phosphate buffer at
constant potential of - 0.80 V vs. SCE. The electrode was stable
for the reaction and yielded NADH quantitatively in 97.8% current
efficiency.

Recently much effort has been focused on the electro-
enzymatic synthesis based on high stereoselectivity and species-
selectivity of enzyme reactions involving nicotinamide adenine
dinucleotide (oxidized form, NAD(P)*; reduced form NAD(P)
H).»> If the regeneration of NAD(P)*/NAD(P)H system is
achieved by an electrochemical process, one can construct an
electrochemical bioreactor which makes possible to produce
optically pure compounds, in combination with NAD(P)H-
dependent enzymes.*® The electrochemical regeneration of
NAD(P)H has been always performed by indirect electrochemical
method, because the direct electrochemical reduction of NAD(P)H
leads usually to yield enzymatically inactive NAD-dimers.® To
avoid this, viologen (VL) as one-electron mediator has been
often used in combination with ferredoxin-NADP*-reductase
(FNR),” lipoamide dehydrogenase (diaphorase, Dp),**'° enoate
reductase™ or VL accepting pyridine nucleotide oxidoreductases >
as regeneration enzymes, while the indirect electrochemical
NAD(P)H regeneration without regeneration enzyme has
succeded by the use of rhodium complexes.™ **°

The advantages of electroenzymatic process can be
emphasized by means of enzyme- and all other components-
modified electrode. Simon et al. coimmobilized VL and VL-
accepting pyridine nucleotide oxidoreductase at the surface of
carbon cathode and showed an electrochemical NADH production
rate of 9 nmol cm®h™ from NAD*."? Beley and Collin electro-
polymerized pyrrole-linked rhodium complexes on reticulated
vitreous carbon electrode and showed an electrochemical NADH
production rate of 0.4 umol cm® h* from NAD** A reactive
polymer-coated electrode swelled in aqueous solution may be a
better candidate to remove the defect. For electroenzymatic
oxidation of alcohols, we have used a poly(acrylic acid)-coated
graphite felt (PAA-GF) electrode whose surface layer was able
to not only load sufficient amounts of mediator and enzyme but
also penetrate substrates without hindrance. %'

5 mM VL and 2.5 wt% Nafion /
alcoholic solution 0.1 wt% PAA/
(containing 5 wt% H,O) VL-immobilized in CH30H
GF - > -
dry in vacuo GF (2) dry in vacuo

(density of Nafion : 27.5 mg/cm3)

Incorporation of VLs by electrostatic binding to cation-
exchange membranes has been reported for the purpose of
electrochemical " and photoelectrochemical* studies. In this
communication, we newly immobilized a cation-exchange
polymer layer to fix VL by ion-pair formation together with the
PAA layer to fix Dp for preparative electrocatalytic reduction of
NAD* to NADH.

A typical procedure for the preparation of the VL- and Dp-
comodified electrode is shown in Scheme 1. A GF (National
Electric Carbon Corp., WDF) plate (5.0 x 2.0 x 0.5 cm®) was
first dipped in a 10 ml of 5 mM(M = mol dm?) VL and 2.5 wt%
Nafion 117 solution (95 wt% lower aliphatic alcohols and 5 wt%
water). The GF plate was impregnated with 5.5 ml of the
solution and was dried in vacuo, and then coated with 5.5ml of
0.1 wt% PAA (average MW: 1400000) methanol solution and
dried in vacuo. The GF thus prepared was treated in a 5.5 ml of
20 uM Dp (EC. 1.8.1.4) / phosphate buffer (pH 7.2) in the
presence of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
(WSC) (10 equiv. to Dp) at 4 °C for 48 h, washed in 50 ml water
three times and dried in vacuo.
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Figure 1. Cyclic voltammograms on 1 in the
presence ( ) and absence (- - - - - - ) of 10

mM NAD*. Phospate buffer: pH 7.0. Electrode
size: 1.0 x 1.0 x 0.5 cm3. Scan rate: 10 mV- s L

20puMDp (EC1.8.1.4)/
phosphate buffer (pH 7.2), ~ .
VL-immobilized = 48 h, 4 °C (with WSC) VL- and Dp
PAA-coated GF v » coimmobilized
Ty vacuo PAA-coated GF (1)

Scheme 1. Preparation of VL- and Dp-coimmobilized electrode (1).
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The VL- and Dp-coimmobilized GF electrode (1) thus
prepared showed two well defined redox waves in the cyclic
voltammogram (CV) (Figure 1). Though several investigations
have indicated the stable couple (VL*'-VL>) at the first redox
wave,"”” it should be noted that the second redox couple
(VL’-VL"")is also stable in this CV. Therefore, both reduction
species (VL* and VL° can be effectively used as reduction
mediator. In fact, 1revealed a large electrocatalytic current for
the reduction of NAD* at the peak potential of -0.70 V (Figure
1), which suggests a possible use of 1 for macroelectrolysis.
The characterization data of 1 are summarized in Table 1.

Table 1. Characterization Data of 1
Ratio of COOH groups of PAA (%)%

Density of VL
Dp-immobilized Free (wmol /em 3)
16 84 55

a) The values were calculated by back titration (an excess amount of
0.01 M NaOH) with 0.01 M HCI solutjon.

Preparative electrocatalytic reduction of NAD* was carried
out on 1 or VL-immobilized GF electrode (2) (both sizes are 1.0
x 1.0 x 0.5 cm®) in an undivided cell containing 10 ml of 10 mM
NADH / phosphate buffer (pH 7.0) at - 0.80 V or - 1.20 V vs.
SCE under nitrogen atmosphere. The reaction products were
analyzed by UV spectroscopy (340 nm)* and high performance
liquid chromatography (Biofine RPC-PO, 0.46 mm ¢ x 25 cm /
column temp 30 °C, flow speed: 1.0 ml min ™, solvent: phosphate
buffer (pH 7.0): CH,CN = 95:5).

NAD™ was selectively reduced to NADH on both 1 and 2 at
-0.80 V vs. SCE, containing 1 uM Dp in phosphate buffer in the
case of 2. The initial reduction rate of NAD™* was 5.2 times
faster on 1than on 2. Figure 2-ashows that NAD*was perfectly
converted to NADH on 1 at 4 h in current efficiency of 97.8%
and turnover number of 364 based on VL. The reaction rate of 1
umol cm?h™ (Figure 2-4) in the present work is 2.5 times faster
than that in the previously reported works.™ On the other hand,
the NAD* reduction at - 1.20 V yielded some amounts of NAD-
dimer as a by-product in the final part of electrolysis probably
due to the direct electrochemical reduction of NAD* (Figure
2-b). The NAD-dimer formation was 4 times more significant
on 2 than on 1. These results suggest that the selective
reduction of NAD" proceeds smoothly at - 0.80 V vs. SCE on 1.

The reusability of 1for the reduction of NAD * was examined
by repeating the electrolysis four times. The reduction peak
currents in CVs on 1 with and without 10 mM NAD * remained
unchanged during the repeated electrolysis. This means that 1 is
not deactivated during macroelectrolysis and can be used
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Figure 2. Macroelectrolysis of NAD* on 1 at -0.80 V
(a) and -1.20 V (b). Electrode size: 1.0 x 1.0 x 0.5 cmS.
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repeatedly. Turnover number of NAD * based was 1456 after the
four batch electrolysis.

In conclusion, a thin poly(acrylic acid) layer-coated graphite
felt electrode coimmobiling methyl viologen and diaphorase was
stable and reduced NAD* to NADH quantitatively by
electroenzymatic reduction. If the electrode is combined with
other NADH-depending enzymes, stereoselective and species-
selective electroenzymatic reactions will be realized for prepara-
tive synthesis on the electrode.
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